盘点一下我用 kafka 两年以来踩过的一些非比寻常的坑 - 今日头条

本文由 简悦 SimpRead 转码, 原文地址 www.toutiao.com

前言我的上家公司是做餐饮系统的,每天中午和晚上用餐高峰期,系统的并发量不容小觑。为了保险起见,公司规定各部门都要在吃饭的时间轮流值班,防止出现线

我的上家公司是做餐饮系统的,每天中午和晚上用餐高峰期,系统的并发量不容小觑。为了保险起见,公司规定各部门都要在吃饭的时间轮流值班,防止出现线上问题时能够及时处理。

我当时在后厨显示系统团队,该系统属于订单的下游业务。用户点完菜下单后,订单系统会通过发 kafka 消息给我们系统,系统读取消息后,做业务逻辑处理,持久化订单和菜品数据,然后展示到划菜客户端。这样厨师就知道哪个订单要做哪些菜,有些菜做好了,就可以通过该系统出菜。系统自动通知服务员上菜,如果服务员上完菜,修改菜品上菜状态,用户就知道哪些菜已经上了,哪些还没有上。这个系统可以大大提高后厨到用户的效率。

https://p26.toutiaoimg.com/origin/pgc-image/c2b170e6d98944379190ca58f0c86b5f?from=pc

事实证明,这一切的关键是消息中间件: kafka ,如果它有问题,将会直接影响到后厨显示系统的功能。

接下来,我跟大家一起聊聊使用 kafka 两年时间踩过哪些坑?

刚开始我们系统的商户很少,为了快速实现功能,我们没想太多。既然是走消息中间件 kafka 通信,订单系统发消息时将订单详细数据放在消息体,我们后厨显示系统只要订阅 topic ,就能获取相关消息数据,然后处理自己的业务即可。

不过这套方案有个关键因素: 要保证消息的顺序

为什么呢?

订单有很多状态,比如:下单、支付、完成、撤销等,不可能 下单 的消息都没读取到,就先读取 支付 或 撤销 的消息吧,如果真的这样,数据不是会产生错乱?

好吧,看来保证消息顺序是有必要的。

我们都知道 kafka 的 topic 是无序的,但是一个 topic 包含多个 partition ,每个 partition 内部是有序的。

https://p26.toutiaoimg.com/origin/pgc-image/25e4e11dd5d44f018a26d4ee48d81e6a?from=pc

如此一来,思路就变得清晰了:只要保证生产者写消息时,按照一定的规则写到同一个 partition ,不同的消费者读不同的 partition 的消息,就能保证生产和消费者消息的顺序。

我们刚开始就是这么做的,同一个 商户编号 的消息写到同一个 partition , topic 中创建了 4 个 partition ,然后部署了 4 个消费者节点,构成 消费者组 ,一个 partition 对应一个消费者节点。从理论上说,这套方案是能够保证消息顺序的。

https://p26.toutiaoimg.com/origin/pgc-image/39636d4a63874eecba8a9561e5628833?from=pc

一切规划得看似 “天衣无缝”,我们就这样” 顺利“上线了。

该功能上线了一段时间,刚开始还是比较正常的。

但是,好景不长,很快就收到用户投诉,说在划菜客户端有些订单和菜品一直看不到,无法划菜。

我定位到了原因,公司在那段时间网络经常不稳定,业务接口时不时报超时,业务请求时不时会连不上数据库。

这种情况对 顺序消息 的打击,可以说是 毁灭性 的。

为什么这么说?

假设订单系统发了:”下单 “、” 支付 “、” 完成“ 三条消息。

https://p26.toutiaoimg.com/origin/pgc-image/3db84f4919804ca4988eca1376fecc2f?from=pc

而”下单 “消息由于网络原因我们系统处理失败了,而后面的两条消息的数据是无法入库的,因为只有” 下单“消息的数据才是完整的数据,其他类型的消息只会更新状态。

加上,我们当时没有做 失败重试机制 ,使得这个问题被放大了。问题变成:一旦” 下单 “消息的数据入库失败,用户就永远看不到这个订单和菜品了。

那么这个紧急的问题要如何解决呢?

最开始我们的想法是:在消费者处理消息时,如果处理失败了,立马重试 3-5 次。但如果有些请求要第 6 次才能成功怎么办?不可能一直重试呀,这种同步重试机制,会阻塞其他商户订单消息的读取。

显然用上面的这种 同步重试机制 在出现异常的情况,会严重影响消息消费者的消费速度,降低它的吞吐量。

如此看来,我们不得不用 异步重试机制 了。

如果用异步重试机制,处理失败的消息就得保存到 重试表 下来。

但有个新问题立马出现: 只存一条消息如何保证顺序?

存一条消息的确无法保证顺序,假如:”下单 “消息失败了,还没来得及异步重试。此时,” 支付“消息被消费了,它肯定是不能被正常消费的。

此时,” 支付 “消息该一直等着,每隔一段时间判断一次,它前面的消息都有没有被消费?

如果真的这么做,会出现两个问题:

  1. ”支付 “消息前面只有” 下单“消息,这种情况比较简单。但如果某种类型的消息,前面有 N 多种消息,需要判断多少次呀,这种判断跟订单系统的耦合性太强了,相当于要把他们系统的逻辑搬一部分到我们系统。
  2. 影响消费者的消费速度

这时有种更简单的方案浮出水面:消费者在处理消息时,先判断该 订单号 在 重试表 有没有数据,如果有则直接把当前消息保存到 重试表 。如果没有,则进行业务处理,如果出现异常,把该消息保存到 重试表 。

后来我们用 elastic-job 建立了 失败重试机制 ,如果重试了 7 次后还是失败,则将该消息的状态标记为 失败 ,发邮件通知开发人员。

终于由于网络不稳定,导致用户在划菜客户端有些订单和菜品一直看不到的问题被解决了。现在商户顶多偶尔延迟看到菜品,比一直看不菜品好太多。

随着销售团队的市场推广,我们系统的商户越来越多。随之而来的是消息的数量越来越大,导致消费者处理不过来,经常出现消息积压的情况。对商户的影响非常直观,划菜客户端上的订单和菜品可能半个小时后才能看到。一两分钟还能忍,半个消息的延迟,对有些暴脾气的商户哪里忍得了,马上投诉过来了。我们那段时间经常接到商户投诉说订单和菜品有延迟。

虽说,加 服务器节点 就能解决问题,但是按照公司为了省钱的惯例,要先做系统优化,所以我们开始了 消息积压 问题解决之旅。

虽说 kafka 号称支持 百万级的 TPS ,但从 producer 发送消息到 broker 需要一次网络 IO , broker 写数据到磁盘需要一次磁盘 IO (写操作), consumer 从 broker 获取消息先经过一次磁盘 IO (读操作),再经过一次网络 IO 。

https://p26.toutiaoimg.com/origin/pgc-image/89f9d10e0122472c848b1d3ebf101c00?from=pc

一次简单的消息从生产到消费过程,需要经过 2 次网络 IO 和 2 次磁盘 IO 。如果消息体过大,势必会增加 IO 的耗时,进而影响 kafka 生产和消费的速度。消费者速度太慢的结果,就会出现消息积压情况。

除了上面的问题之外, 消息体过大 ,还会浪费服务器的磁盘空间,稍不注意,可能会出现磁盘空间不足的情况。

此时,我们已经到了需要优化消息体过大问题的时候。

我们重新梳理了一下业务,没有必要知道订单的 中间状态 ,只需知道一个 最终状态 就可以了。

如此甚好,我们就可以这样设计了:

  1. 订单系统发送的消息体只用包含:id 和状态等关键信息。
  2. 后厨显示系统消费消息后,通过 id 调用订单系统的订单详情查询接口获取数据。
  3. 后厨显示系统判断数据库中是否有该订单的数据,如果没有则入库,有则更新。

https://p26.toutiaoimg.com/origin/pgc-image/184bb4957665499e92bf54515fd4fa02?from=pc

果然这样调整之后,消息积压问题很长一段时间都没再出现。

还真别高兴得太早,有天中午又有商户投诉说订单和菜品有延迟。我们一查 kafka 的 topic 竟然又出现了消息积压。

但这次有点诡异,不是所有 partition 上的消息都有积压,而是只有一个。

https://p26.toutiaoimg.com/origin/pgc-image/103aef80de8a449b8f8c01d07c40a0eb?from=pc

刚开始,我以为是消费那个 partition 消息的节点出了什么问题导致的。但是经过排查,没有发现任何异常。

这就奇怪了,到底哪里有问题呢?

后来,我查日志和数据库发现,有几个商户的订单量特别大,刚好这几个商户被分到同一个 partition ,使得该 partition 的消息量比其他 partition 要多很多。

这时我们才意识到,发消息时按 商户编号 路由 partition 的规则不合理,可能会导致有些 partition 消息太多,消费者处理不过来,而有些 partition 却因为消息太少,消费者出现空闲的情况。

为了避免出现这种分配不均匀的情况,我们需要对发消息的路由规则做一下调整。

我们思考了一下,用订单号做路由相对更均匀,不会出现单个订单发消息次数特别多的情况。除非是遇到某个人一直加菜的情况,但是加菜是需要花钱的,所以其实同一个订单的消息数量并不多。

调整后按 订单号 路由到不同的 partition ,同一个订单号的消息,每次到发到同一个 partition 。

https://p26.toutiaoimg.com/origin/pgc-image/225a87c96a6b449388119c112116fe83?from=pc

调整后,消息积压的问题又有很长一段时间都没有再出现。我们的商户数量在这段时间,增长得非常快,越来越多了。

在高并发的场景中,消息积压问题,可以说如影随形,真的没办法从根本上解决。表面上看,已经解决了,但后面不知道什么时候,就会冒出一次,比如这次:

有天下午,产品过来说:有几个商户投诉过来了,他们说菜品有延迟,快查一下原因。

这次问题出现得有点奇怪。

为什么这么说?

首先这个时间点就有点奇怪,平常出问题,不都是中午或者晚上用餐高峰期吗?怎么这次问题出现在下午?

根据以往积累的经验,我直接看了 kafka 的 topic 的数据,果然上面消息有积压,但这次每个 partition 都积压了 十几万 的消息没有消费,比以往加压的消息数量增加了 几百倍 。这次消息积压得极不寻常。

我赶紧查服务监控看看消费者挂了没,还好没挂。又查服务日志没有发现异常。这时我有点迷茫,碰运气问了问订单组下午发生了什么事情没?他们说下午有个促销活动,跑了一个 JOB 批量更新过有些商户的订单信息。

这时,我一下子如梦初醒,是他们在 JOB 中批量发消息导致的问题。怎么没有通知我们呢?实在太坑了。

虽说知道问题的原因了,倒是眼前积压的这 十几万 的消息该如何处理呢?

此时,如果直接调大 partition 数量是不行的,历史消息已经存储到 4 个固定的 partition ,只有新增的消息才会到新的 partition 。我们重点需要处理的是已有的 partition 。

直接加服务节点也不行,因为 kafka 允许同组的多个 partition 被一个 consumer 消费,但不允许一个 partition 被同组的多个 consumer 消费,可能会造成资源浪费。

看来只有用多线程处理了。

为了紧急解决问题,我改成了用 线程池 处理消息,核心线程和最大线程数都配置成了 50 。

调整之后,果然,消息积压数量不断减少。

但此时有个更严重的问题出现:我收到了报警邮件,有两个订单系统的节点 down 机了。

不久,订单组的同事过来找我说,我们系统调用他们订单查询接口的并发量突增,超过了预计的好几倍,导致有 2 个服务节点挂了。他们把查询功能单独整成了一个服务,部署了 6 个节点,挂了 2 个节点,再不处理,另外 4 个节点也会挂。订单服务可以说是公司最核心的服务,它挂了公司损失会很大,情况万分紧急。

为了解决这个问题,只能先把线程数调小。

幸好,线程数是可以通过 zookeeper 动态调整的,我把核心线程数调成了 8 个,核心线程数改成了 10 个。

后面,运维把订单服务挂的 2 个节点重启后恢复正常了,以防万一,再多加了 2 个节点。为了确保订单服务不会出现问题,就保持目前的消费速度,后厨显示系统的消息积压问题,1 小时候后也恢复正常了。

https://p26.toutiaoimg.com/origin/pgc-image/cc702a1ab27b4a84b2e77f3f7395d228?from=pc

后来,我们开了一次复盘会,得出的结论是:

  1. 订单系统的批量操作一定提前通知下游系统团队。
  2. 下游系统团队多线程调用订单查询接口一定要做压测。
  3. 这次给订单查询服务敲响了警钟,它作为公司的核心服务,应对高并发场景做得不够好,需要做优化。
  4. 对消息积压情况加监控。

顺便说一下,对于要求严格保证消息顺序的场景,可以将线程池改成多个队列,每个队列用单线程处理。

为了防止后面再次出现消息积压问题,消费者后面就一直用多线程处理消息。

但有天中午我们还是收到很多报警邮件,提醒我们 kafka 的 topic 消息有积压。我们正在查原因,此时产品跑过来说:又有商户投诉说菜品有延迟,赶紧看看。这次她看起来有些不耐烦,确实优化了很多次,还是出现了同样的问题。

在外行看来: 为什么同一个问题一直解决不了?

表面上问题的症状是一样的,都是出现了菜品延迟,他们知道的是因为消息积压导致的。但是他们不知道深层次的原因,导致消息积压的原因其实有很多种。这也许是使用消息中间件的通病吧。

我沉默不语,只能硬着头皮定位原因了。

后来我查日志发现消费者消费一条消息的耗时长达 2 秒 。以前是 500 毫秒 ,现在怎么会变成 2 秒 呢?

奇怪了,消费者的代码也没有做大的调整,为什么会出现这种情况呢?

查了一下线上菜品表,单表数据量竟然到了 几千万 ,其他的划菜表也是一样,现在单表保存的数据太多了。

我们组梳理了一下业务,其实菜品在客户端只展示最近 3 天 的即可。

这就好办了,我们服务端存着 多余的数据 ,不如把表中多余的数据归档。于是,DBA 帮我们把数据做了归档,只保留最近 7 天 的数据。

如此调整后,消息积压问题被解决了,又恢复了往日的平静。

别高兴得太早了,还有其他的问题,比如:报警邮件经常报出数据库异常: Duplicate entry ‘6’ for key ‘PRIMARY’ ,说主键冲突。

出现这种问题一般是由于有两个以上相同主键的 sql,同时插入数据,第一个插入成功后,第二个插入的时候会报主键冲突。表的主键是唯一的,不允许重复。

我仔细检查了代码,发现代码逻辑会先根据主键从表中查询订单是否存在,如果存在则更新状态,不存在才插入数据,没得问题。

这种判断在并发量不大时,是有用的。但是如果在高并发的场景下,两个请求同一时刻都查到订单不存在,一个请求先插入数据,另一个请求再插入数据时就会出现主键冲突的异常。

解决这个问题最常规的做法是: 加锁 。

我刚开始也是这样想的,加数据库悲观锁肯定是不行的,太影响性能。加数据库乐观锁,基于版本号判断,一般用于更新操作,像这种插入操作基本上不会用。

剩下的只能用分布式锁了,我们系统在用 redis,可以加基于 redis 的分布式锁,锁定订单号。

但后面仔细思考了一下:

  1. 加分布式锁也可能会影响消费者的消息处理速度。
  2. 消费者依赖于 redis,如果 redis 出现网络超时,我们的服务就悲剧了。

所以,我也不打算用分布式锁。

而是选择使用 mysql 的 INSERT INTO …ON DUPLICATE KEY UPDATE 语法:

1
2
3
4
5
6
INSERT INTO table (column_list)
VALUES (value_list)
ON DUPLICATE KEY UPDATE
c1 = v1, 
c2 = v2,
...;

它会先尝试把数据插入表,如果主键冲突的话那么更新字段。

把以前的 insert 语句改造之后,就没再出现过主键冲突问题。

不久之后的某天,又收到商户投诉说下单后,在划菜客户端上看得到订单,但是看到的菜品不全,有时甚至订单和菜品数据都看不到。

这个问题跟以往的都不一样,根据以往的经验先看 kafka 的 topic 中消息有没有积压,但这次并没有积压。

再查了服务日志,发现订单系统接口返回的数据有些为空,有些只返回了订单数据,没返回菜品数据。

这就非常奇怪了,我直接过去找订单组的同事。他们仔细排查服务,没有发现问题。这时我们不约而同的想到,会不会是数据库出问题了,一起去找 DBA 。果然, DBA 发现数据库的主库同步数据到从库,由于网络原因偶尔有延迟,有时延迟有 3 秒 。

如果我们的业务流程从发消息到消费消息耗时小于 3 秒 ,调用订单详情查询接口时,可能会查不到数据,或者查到的不是最新的数据。

这个问题非常严重,会导致直接我们的数据错误。

为了解决这个问题,我们也加了 重试机制 。调用接口查询数据时,如果返回数据为空,或者只返回了订单没有菜品,则加入 重试表 。

调整后,商户投诉的问题被解决了。

kafka 消费消息时支持三种模式:

  • at most onece 模式 最多一次。保证每一条消息 commit 成功之后,再进行消费处理。消息可能会丢失,但不会重复。
  • at least onece 模式 至少一次。保证每一条消息处理成功之后,再进行 commit。消息不会丢失,但可能会重复。
  • exactly onece 模式 精确传递一次。将 offset 作为唯一 id 与消息同时处理,并且保证处理的原子性。消息只会处理一次,不丢失也不会重复。但这种方式很难做到。

kafka 默认的模式是 at least onece ,但这种模式可能会产生重复消费的问题,所以我们的业务逻辑必须做幂等设计。

而我们的业务场景保存数据时使用了 INSERT INTO …ON DUPLICATE KEY UPDATE 语法,不存在时插入,存在时更新,是天然支持幂等性的。

我们当时线上环境分为: pre (预发布环境) 和 prod (生产环境),两个环境共用同一个数据库,并且共用同一个 kafka 集群。

需要注意的是,在配置 kafka 的 topic 的时候,要加前缀用于区分不同环境。pre 环境的以 pre_开头,比如:pre_order,生产环境以 prod_开头,比如:prod_order,防止消息在不同环境中串了。

但有次运维在 pre 环境切换节点,配置 topic 的时候,配错了,配成了 prod 的 topic 。刚好那天,我们有新功能上 pre 环境。结果悲剧了, prod 的有些消息被 pre 环境的 consumer 消费了,而由于消息体做了调整,导致 pre 环境的 consumer 处理消息一直失败。

其结果是生产环境丢了部分消息。不过还好,最后生产环境消费者通过重置 offset ,重新读取了那一部分消息解决了问题,没有造成太大损失。

除了上述问题之外,我还遇到过:

  • kafka consumer cpu 使用率 100%
  • kafka 集群中的一个 broker 节点挂了,重启后又一直挂。

这两个问题说起来有些复杂,我就不一一列举了

非常感谢那两年使用消息中间件 kafka 的经历,虽说遇到过很多问题,踩了很多坑,走了很多弯路,但是实打实的让我积累了很多宝贵的经验,快速成长了。

其实 kafka 是一个非常优秀的消息中间件,我所遇到的绝大多数问题,都并非 kafka 自身的问题(除了 cpu 使用率 100% 是它的一个 bug 导致的之外)。

作者:苏三

原文链接: https://mp.weixin.qq.com/s?__biz=MzUxODkzNTQ3Nw==&mid=2247486202&idx=1&sn= 23f249d3796eb53aff9cf41de6a41761

如果觉得本文对你有帮助,可以转发关注支持一下