JMH 使用指南

本文由 简悦 SimpRead 转码, 原文地址 https://www.cnblogs.com/

简介

JMH(Java Microbenchmark Harness)是用于代码微基准测试的工具套件,主要是基于方法层面的基准测试,精度可以达到纳秒级。该工具是由 Oracle 内部实现 JIT 的大牛们编写的,他们应该比任何人都了解 JIT 以及 JVM 对于基准测试的影响。JMH不止能对Java语言做基准测试,还能对运行在JVM上的其他语言做基准测试。

当你定位到热点方法,希望进一步优化方法性能的时候,就可以使用 JMH 对优化的结果进行量化的分析。

JMH 比较典型的应用场景如下:

  1. 想准确地知道某个方法需要执行多长时间,以及执行时间和输入之间的相关性
  2. 对比接口不同实现在给定条件下的吞吐量
  3. 查看多少百分比的请求在多长时间内完成

下面我们以字符串拼接的两种方法为例子使用 JMH 做基准测试。

快速入门

添加依赖

JMH 是 JDK9 自带的,如果是 JDK9 之前的版本需要加入如下依赖(目前 JMH 的最新版本为 1.23):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-core</artifactId>
    <version>1.23</version>
</dependency>
<dependency>
    <groupId>org.openjdk.jmh</groupId>
    <artifactId>jmh-generator-annprocess</artifactId>
    <version>1.23</version>
</dependency>

编写测试代码

接下来,创建一个 JMH 测试类,用来判断 +StringBuilder.append() 两种字符串拼接哪个耗时更短,具体代码如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations = 3, time = 1)
@Measurement(iterations = 5, time = 5)
@Threads(4)
@Fork(1)
@State(value = Scope.Benchmark)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class StringConnectTest {

    @Param(value = {"10", "50", "100"})
    private int length;

    @Benchmark
    public void testStringAdd(Blackhole blackhole) {
        String a = "";
        for (int i = 0; i < length; i++) {
            a += i;
        }
        blackhole.consume(a);
    }

    @Benchmark
    public void testStringBuilderAdd(Blackhole blackhole) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < length; i++) {
            sb.append(i);
        }
        blackhole.consume(sb.toString());
    }

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
                .include(StringConnectTest.class.getSimpleName())
                .result("result.json")
                .resultFormat(ResultFormatType.JSON).build();
        new Runner(opt).run();
    }
}

其中需要测试的方法用 @Benchmark 注解标识,这些注解的具体含义将在下面介绍。

在 main() 函数中,首先对测试用例进行配置,使用 Builder 模式配置测试,将配置参数存入 Options 对象,并使用 Options 对象构造 Runner 启动测试。

另外大家可以看下官方提供的 jmh 示例 demo:http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/

使用Main方法执行测试

准备工作做好了,接下来,运行代码,等待片刻,测试结果就出来了,下面对结果做下简单说明:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# JMH version: 1.23
# VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09
# VM invoker: D:\Software\Java\jdk1.8.0_201\jre\bin\java.exe
# VM options: -javaagent:D:\Software\JetBrains\IntelliJ IDEA 2019.1.3\lib\idea_rt.jar=61018:D:\Software\JetBrains\IntelliJ IDEA 2019.1.3\bin -Dfile.encoding=UTF-8
# Warmup: 3 iterations, 1 s each
# Measurement: 5 iterations, 5 s each
# Timeout: 10 min per iteration
# Threads: 4 threads, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: com.wupx.jmh.StringConnectTest.testStringBuilderAdd
# Parameters: (length = 100)

该部分为 测试的基本信息 ,比如使用的 Java 路径,预热代码的迭代次数,测量代码的迭代次数,使用的线程数量,测试的统计单位等。

1
2
3
# Warmup Iteration   1: 1083.569 ±(99.9%) 393.884 ns/op
# Warmup Iteration   2: 864.685 ±(99.9%) 174.120 ns/op
# Warmup Iteration   3: 798.310 ±(99.9%) 121.161 ns/op

该部分为每一次热身中的性能指标,预热测试不会作为最终的统计结果。预热的目的是 让 JVM 对被测代码进行足够多的优化 ,比如,在预热后,被测代码应该得到了充分的 JIT 编译和优化。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
Iteration   1: 810.667 ±(99.9%) 51.505 ns/op
Iteration   2: 807.861 ±(99.9%) 13.163 ns/op
Iteration   3: 851.421 ±(99.9%) 33.564 ns/op
Iteration   4: 805.675 ±(99.9%) 33.038 ns/op
Iteration   5: 821.020 ±(99.9%) 66.943 ns/op

Result "com.wupx.jmh.StringConnectTest.testStringBuilderAdd":
  819.329 ±(99.9%) 72.698 ns/op [Average]
  (min, avg, max) = (805.675, 819.329, 851.421), stdev = 18.879
  CI (99.9%): [746.631, 892.027] (assumes normal distribution)

Benchmark                               (length)  Mode  Cnt     Score     Error  Units
StringConnectTest.testStringBuilderAdd       100  avgt    5   819.329 ±  72.698  ns/op

该部分显示测量迭代的情况,每一次迭代都显示了当前的执行速率,即一个操作所花费的时间。在进行 5 次迭代后,进行统计,在本例中,length 为 100 的情况下 testStringBuilderAdd 方法的平均执行花费时间为 819.329 ns,误差为 72.698 ns

最后的测试结果如下所示:

1
2
3
4
5
6
7
Benchmark                               (length)  Mode  Cnt     Score     Error  Units
StringConnectTest.testStringAdd               10  avgt    5   161.496 ±  17.097  ns/op
StringConnectTest.testStringAdd               50  avgt    5  1854.657 ± 227.902  ns/op
StringConnectTest.testStringAdd              100  avgt    5  6490.062 ± 327.626  ns/op
StringConnectTest.testStringBuilderAdd        10  avgt    5    68.769 ±   4.460  ns/op
StringConnectTest.testStringBuilderAdd        50  avgt    5   413.021 ±  30.950  ns/op
StringConnectTest.testStringBuilderAdd       100  avgt    5   819.329 ±  72.698  ns/op

结果表明,在拼接字符次数越多的情况下,StringBuilder.append() 的性能就更好。

使用IDEA插件执行测试

大家还可以通过 IDEA 安装 JMH 插件使 JMH 更容易实现基准测试,在 IDEA 中点击 File->Settings...->Plugins,然后搜索 jmh,选择安装 JMH plugin:

image-20211104133537340

这个插件可以让我们能够以 JUnit 相同的方式使用 JMH,主要功能如下:

  1. 自动生成带有 @Benchmark 的方法
  2. 像 JUnit 一样,运行单独的 Benchmark 方法
  3. 运行类中所有的 Benchmark 方法

比如可以通过右键点击 Generate...,选择操作 Generate JMH benchmark 就可以生成一个带有 @Benchmark 的方法。

还有将光标移动到方法声明并调用 Run 操作就运行一个单独的 Benchmark 方法。

将光标移到类名所在行,右键点击 Run 运行,该类下的所有被 @Benchmark 注解的方法都会被执行。

打成Jar包进行测

对于一些小测试,直接用上面的方式写一个 main 函数手动执行就好了。

对于大型的测试,需要测试的时间比较久、线程数比较多,加上测试的服务器需要,一般要放在 Linux 服务器里去执行。

JMH 官方提供了生成 jar 包的方式来执行,我们需要在 maven 里增加一个 plugin,具体配置如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
<plugins>
    <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.4.1</version>
        <executions>
            <execution>
                <phase>package</phase>
                <goals>
                    <goal>shade</goal>
                </goals>
                <configuration>
                    <finalName>jmh-demo</finalName>
                    <transformers>
                        <transformer
                                implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                            <mainClass>org.openjdk.jmh.Main</mainClass>
                        </transformer>
                    </transformers>
                </configuration>
            </execution>
        </executions>
    </plugin>
</plugins>

接着执行 maven 的命令生成可执行 jar 包并执行:

1
2
mvn clean install
java -jar target/jmh-demo.jar StringConnectTest

JMH 基础

为了能够更好地使用 JMH 的各项功能,下面对 JMH 的基本概念进行讲解:

@BenchmarkMode

用来配置 Mode 选项,可用于类或者方法上,这个注解的 value 是一个数组,可以把几种 Mode 集合在一起执行,如:@BenchmarkMode({Mode.SampleTime, Mode.AverageTime}),还可以设置为 Mode.All,即全部执行一遍。

  1. Throughput:整体吞吐量,每秒执行了多少次调用,单位为 ops/time
  2. AverageTime:用的平均时间,每次操作的平均时间,单位为 time/op
  3. SampleTime:随机取样,最后输出取样结果的分布
  4. SingleShotTime:只运行一次,往往同时把 Warmup 次数设为 0,用于测试冷启动时的性能
  5. All:上面的所有模式都执行一次

@State

通过 State 可以指定一个对象的作用范围,JMH 根据 scope 来进行实例化和共享操作。@State 可以被继承使用,如果父类定义了该注解,子类则无需定义。由于 JMH 允许多线程同时执行测试,不同的选项含义如下:

  1. Scope.Benchmark:所有测试线程共享一个实例,测试有状态实例在多线程共享下的性能
  2. Scope.Group:同一个线程在同一个 group 里共享实例
  3. Scope.Thread:默认的 State,每个测试线程分配一个实例

@OutputTimeUnit

为统计结果的时间单位,可用于类或者方法注解

@Warmup

预热所需要配置的一些基本测试参数,可用于类或者方法上。一般前几次进行程序测试的时候都会比较慢,所以要让程序进行几轮预热,保证测试的准确性。参数如下所示:

  1. iterations:预热的次数
  2. time:每次预热的时间
  3. timeUnit:时间的单位,默认秒
  4. batchSize:批处理大小,每次操作调用几次方法

为什么需要预热?
因为 JVM 的 JIT 机制的存在,如果某个函数被调用多次之后,JVM 会尝试将其编译为机器码,从而提高执行速度,所以为了让 benchmark 的结果更加接近真实情况就需要进行预热。

@Measurement

实际调用方法所需要配置的一些基本测试参数,可用于类或者方法上,参数和 @Warmup 相同。

@Threads

每个进程中的测试线程,可用于类或者方法上。

@Fork

进行 fork 的次数,可用于类或者方法上。如果 fork 数是 2 的话,则 JMH 会 fork 出两个进程来进行测试。

@Param

指定某项参数的多种情况,特别适合用来测试一个函数在不同的参数输入的情况下的性能,只能作用在字段上,使用该注解必须定义 @State 注解。

在介绍完常用的注解后,让我们来看下 JMH 有哪些陷阱。

JMH 陷阱

在使用 JMH 的过程中,一定要避免一些陷阱。

比如 JIT 优化中的死码消除,比如以下代码:

1
2
3
4
5
6
7
@Benchmark
public void testStringAdd(Blackhole blackhole) {
    String a = "";
    for (int i = 0; i < length; i++) {
        a += i;
    }
}

JVM 可能会认为变量 a 从来没有使用过,从而进行优化把整个方法内部代码移除掉,这就会影响测试结果。

JMH 提供了两种方式避免这种问题,一种是将这个变量作为方法返回值 return a,一种是通过 Blackhole 的 consume 来避免 JIT 的优化消除。

其他陷阱还有常量折叠与常量传播、永远不要在测试中写循环、使用 Fork 隔离多个测试方法、方法内联、伪共享与缓存行、分支预测、多线程测试等,感兴趣的可以阅读 https://github.com/lexburner/JMH-samples 了解全部的陷阱。

JMH 可视化

除此以外,如果你想将测试结果以图表的形式可视化,可以试下这些网站:

比如将上面测试例子结果的 json 文件导入,就可以实现可视化:

总结

本文主要介绍了性能基准测试工具 JMH,它可以通过一些功能来规避由 JVM 中的 JIT 或者其他优化对性能测试造成的影响。

只需要将待测的业务逻辑用 @Benchmark 注解标识,就可以让 JMH 的注解处理器自动生成真正的性能测试代码,以及相应的性能测试配置文件。